নবম-দশম শ্রেণির গণিতে অনুক্রম ও সসীম ধারা সম্পর্কে বিশদ আলোচনা করা হয়েছে। অনুক্রম ও অসীম ধারার মধ্যে একটা প্রত্যক্ষ সম্পর্ক রয়েছে। অনুক্রমের পদগুলোর পূর্বে যোগ চিহ্ন যুক্ত করে অসীম ধারা পাওয়া যায়। এ অধ্যায়ে অসীম ধারা নিয়ে আলোচনা করা হবে।
3-32+ 352-353 + . . . . .
6+3+32 + . . . . . .
নিচে দেখানো সম্পর্কটিতে প্রত্যেক স্বাভাবিক সংখ্যা n এর সঙ্গে n এর বর্গ n2 সম্পর্কিত। অর্থাৎ স্বাভাবিক সংখ্যার সেট N = {1, 2, 3, 4, ... } থেকে একটি নিয়মের মাধ্যমে তার বর্গ সংখ্যার সেট {1, 4, 9, 16, ...} পাওয়া যায়। এই সাজানো বর্গসংখ্যার সেটটি একটি অনুক্রম। যখন কতকগুলো রাশি একটা বিশেষ নিয়মে ক্রমান্বয়ে এমনভাবে সাজানো হয় যে প্রত্যেক রাশি তার পূর্বের ও পরের রাশির সাথে কীভাবে সম্পর্কিত তা জানা যায়, তখন এভাবে সাজানো রাশিগুলোর সেটকে অনুক্রম ( Sequence) বলা হয়।
1 2 3 4 ....... n .......↓ ↓ ↓ ↓ ↓1 4 9 16 ....... n2 ......
উপরের সম্পর্কটিকে ফাংশন বলা হয় এবংf(n)=n2লেখা হয়। এই অনুক্রমের সাধারণ পদ n2 যেকোনো অনুক্রমের পদসংখ্যা অসীম। অনুক্রমটি সাধারণ পদের সাহায্যে লেখার পদ্ধতি হলো{n2}, n=1,2,3,4.... বা, {n2}+∞n=1 বা কেবলই, {n2}। কোনো অনুক্রমের প্রথম রাশিকে প্রথম পদ, দ্বিতীয় রাশিকে দ্বিতীয় পদ, তৃতীয় রাশিকে তৃতীয় পদ, ইত্যাদি বলা হয়। উপরে বর্ণিত 1, 4, 9, 16, ... অনুক্রমের প্রথম পদ= 1, দ্বিতীয় পদ= 4, ইত্যাদি। নিচে অনুক্রমের আরো চারটি উদাহরণ দেওয়া হলো:
ক) 12,122,123,124............,12n,...
খ) 3,1,-1,-3,.......,(5-6n)....
গ) 1,23,35,47,......,n2n-1,...
ঘ) 12,15,110,117,......,1n2+1,...
কোনো অনুক্রমের পদগুলো পরপর যোগ চিহ্ন দ্বারা যুক্ত করলে একটি ধারা (series) পাওয়া যায়। যেমন, 1+4+9+16+..... একটি ধারা। আবার 12+14+18+116+.... আরেকটি ধারা।
এই পরের ধারাটির পরপর দুইটি পদের অনুপাত সমান। এ রকম ধারাকে বলা হয় গুণোত্তর ধারা। যেকোনো ধারার পরপর দুইটি পদের মধ্যে সম্পর্কের উপর নির্ভর করে ওই ধারাটির বৈশিষ্ট্য। যেমন সমান্তর ধারার ক্ষেত্রে পরপর দুইটি পদের অন্তর বা বিয়োগফল সমান হয়।
কোন ধারার পদের সংখ্যার উপর নির্ভর করে ধারাকে নিম্নোক্ত দুইভাবে ভাগ করা যায়। ক) সসীম বা সান্ত ধারা (Finite series) খ) অসীম বা অনন্ত ধারা (Infinite series) । সসীম ধারা সম্পর্কে নবম-দশম শ্রেণির গণিতে আলোচনা করা হয়েছে। এখানে অসীম ধারা সম্পর্কে আলোচনা করা হবে।
বাস্তব সংখ্যার একটি অনুক্রম u1,u2,u3,....,un,.... হলে u1+u2+u3+.....+un+.... কে বাস্তব সংখ্যার একটি অসীম ধারা বলা হয়। এই ধারাটির n তম পদ un ।
u1+u2+u3+......+un+.... অনন্ত ধারার
১ম আংশিক সমষ্টি S1=u1
২য় আংশিক সমষ্টি S2=u1+u2
৩য় আংশিক সমষ্টি S3=u1+u2+u3
n তম আংশিক সমষ্টি Sr=u1+u2+u3+....+un
অর্থাৎ, কোনো অসীম ধারার n তম আংশিক সমষ্টি হচ্ছে ধারাটির প্রথম n সংখ্যক পদের সমষ্টি।
উদাহরণ ১. প্রদত্ত অসীম ধারা দুইটির আংশিক সমষ্টি নির্ণয় কর।
ক) 1+2+3+.... খ)1-1+1-1+.....
সমাধান:
ক) ধারাটি একটি সমান্তর ধারা কারণ ধারাটির প্রথম পদ a = 1 এবং সাধারণ অন্তর d = 1।
সমান্তর ধারার প্রথম n সংখ্যক পদের সমষ্টি Sn=n2{2a+(n-1)d} =n2{2.1+(n-1).1}
কাজেই Sn=n2{2+n-1}=n(n+1)2
উপরের সূত্রে n এর বিভিন্ন মান বসিয়ে পাই,
S10=10×112=55
S1000=1000×10012=500500
S100000=100000×1000012=5000050000
এভাবে, n এর মান যত বড় করা হয়, Sn এর মান তত বড় হয়।
সুতরাং প্রদত্ত অসীম ধারাটির কোনো সমষ্টি নাই ।
খ) 1-1+1-1+....অসীম ধারাটির
১ম আংশিক সমষ্টি S1=1
২য় আংশিক সমষ্টি S2=1-1=0
৩য় আংশিক সমষ্টি S3=1-1+1=1
৪র্থ আংশিক সমষ্টি S4=1-1+1-1=0
উপরের উদাহরণ থেকে দেখা যায় যে, n বিজোড় সংখ্যা হলে n তম আংশিক সমষ্টি Sn=1 এবং n জোড় সংখ্যা হলে n তম আংশিক সমষ্টি Sn=0
তাহলে দেখা যাচ্ছে যে, প্রদত্ত ধারাটির ক্ষেত্রে, এমন কোনো নির্দিষ্ট সংখ্যা পাওয়া যায় না যাকে ধারাটির সমষ্টি বলা যায়।
a+ar+ar2+ar3+...... গুণোত্তর ধারাটির প্রথম পদ a এবং সাধারণ অনুপাত r।
সুতরাং, ধারাটির n তম পদ =arn-1, যেখানে n∈N|
এবার, r≠1হলে ধারাটির n তম আংশিক সমষ্টি
Sn=a+ar+ar2+ar3+.........+arn-1
Sn=a.rn-1r-1 যখন r>1 এবং Sn=a.1-rn1-r, যখন r<1
লক্ষ করি:
ক) |r|<1 হলে, অর্থাৎ,-1<r<1 হলে,n এর মান বৃদ্ধি করলে (n→∞ হলে) |rn| এর মান হ্রাস পায় এবং n এর মান যথেষ্ট বড় করলে |rn|এর মান 0 এর কাছাকাছি হয়। অর্থাৎ |rn| এর প্রান্তীয় মান (Limiting Value) 0 হয়।
ফলে Sr এর প্রান্তীয় মান Sn=a(1-rn)1-r=a1-r-arn1-r=a.a1-r
এক্ষেত্রে, অসীম ধারাটির সমষ্টি S∞=a1-r
খ) |r|>1হলে, অর্থাৎ r>1 অথবা r<-1 হলে, n এর মান বৃদ্ধি করলে |rn| এর মান বৃদ্ধি পায় এবং n কে যথেষ্ট বড় করে |rn|এর মান যথেষ্ট বড় করা যায়। সুতরাং এমন কোন নির্দিষ্ট সংখ্যা S পাওয়া যায় না, যাকে Sn এর প্রান্তীয় মান ধরা যায়।
অর্থাৎ, এক্ষেত্রে অসীম ধারাটির কোনো সমষ্টি নাই।
গ) r=-1 হলে, Sn এর প্রান্তীয় মান পাওয়া যায় না। কেননা, n জোড় সংখ্যা হলে (-1)n=1 এবং n বিজোড় সংখ্যা হলে (-1)n=-1। এক্ষেত্রে ধারাটি হবে, a-a+a-a+a-a+......।
সুতরাং, এই অসীম ধারাটির কোনো সমষ্টি নাই ।
ঘ) r=1 হলেও Sn এর প্রান্তীয় মান পাওয়া যায় না। কেননা তখন ধারাটি হবে a+a+a+a+a+.....(n সংখ্যক)। অর্থাৎ Sn=na যা n এর মান বাড়িয়ে যথেষ্ট বড় করা যায়।
সুতরাং, এই অসীম ধারাটির কোন সমষ্টি নাই ।
|r|<1 অর্থাৎ, -1<r<1 হলে,a+ar+ar2+ar3+..... অসীম গুণোত্তর ধারাটির সমষ্টি S=a1-r| r এর অন্য সকল মানের জন্য অসীম ধারাটির সমষ্টি থাকবে না।
মন্তব্য: অসীম গুণোত্তর ধারার সমষ্টিকে (যদি থাকে) S∞ লিখে প্রকাশ করা হয় এবং একে ধারাটির অসীমতক সমষ্টি বলা হয়। অর্থাৎ,a+ar+ar2+ar3+..... গুণোত্তর ধারাটির অসীমতক সমষ্টি,S∞=a1-r যখন |r|<1।
উদাহরণ ২. নিচের অসীম গুণোত্তর ধারার অসীমতক সমষ্টি (যদি থাকে) নির্ণয় কর।
ক) 13+132+133+134+......
খ)1+0.1+0.01+0.001+.....
গ) 1+1√2+12+12√2+14+......
সমাধান:
ক) এখানে, ধারাটির প্রথম পদ,a=13 এবং সাধারণ অনুপাতr=132×31=13<1
∴ ধারাটির অসীমতক সমষ্টি,
খ) এখানে, ধারাটির প্রথম পদ এবং সাধারণ অনুপাত
ধারাটির অসীমতক সমষ্টি,
গ) এখানে, ধারাটির প্রথম পদ এবং সাধারণ অনুপাত
ধারাটির অসীমতক সমষ্টি, (আসন্ন )
উদাহরণ ৩. নিম্নের পৌনঃপুনিক দশমিক সংখ্যাসমূহকে সাধারণ ভগ্নাংশে রূপান্তর কর:
ক) খ) গ)
সমাধান:
ক)
এই অসীম গুণোত্তর ধারাটির ১ম পদ এবং সাধারণ অনুপাত
খ)
এই অসীম গুণোত্তর ধারাটির ১ম পদ এবং সাধারণ অনুপাত
গ)
এখানে, বন্ধনীর ভিতরের অংশটি একটি অসীম গুণোত্তর ধারা।
আর সেই গুণোত্তর ধারার ১ম পদ এবং সাধারণ অনুপাত
Read more
🚀 সব পরীক্ষায় ১০০% কমন পাবেন!
✅ একটি Trusted Platform
▶️গুগল প্লে স্টোরে #1 এডুকেশন অ্যাপ
🎓 ওয়ান-স্টপ লার্নিং প্ল্যাটফর্ম
📚 গুণগত মানের শিক্ষা
🔢 ১০ লক্ষাধিক প্রশ্ন
📝 সকল পরীক্ষার প্রশ্ন সমাধান সহ নানান সুবিধা এখন একই অ্যাপে।
🚀 আজই ডাউনলোড করুন SATT Academy-এর অ্যাপ▶️ এবং আপনার সাফল্যের পথ সুগম করুন!
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago